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Abstract—The viscoelastic response of laminated composites under the influence of mechanical and
hygrothermal loads is studied analytically. A finite element formulation is developed for the thermo-
viscoelastic solution of free edge stresses in composite laminates. Numerical results are obtained to
verify the present finite element approach and to demonstrate the viscoelastic effect in graphite/epoxy
composites. [n addition, the effect of laminate orientations and environmental conditions on the
interlaminar stress distributions and histories is presented.

. INTRODUCTION

Laminated composites develop interlaminar stresses near a free edge due mainly to mis-
matches in layer properties (Pipes and Pagano, 1970; Herakovich, 1976; Wang and
Crossman, 1977 ; Herakovich et al., 1979). In many cases, these stresses, as predicted by a
linear elastic analysis, are sufficiently large to cause delamination. This mechanism of failure
initiation is dominated by the matrix material and has been commonly observed in quasi-
static loading. As the matrix exhibits time-dependent effects, there is concern about the
viscoelastic response of polymeric composites over a long time period, especially at clevated
temperatures or in the presence of moisture (Crossman and Flaggs, 1979; Yeow ¢t al.,
1979). Although the viscoclastic effect tends to lower the stresses in a laminate under a
constant load, the situation can be quite different in the event that the applied load fluctuates
with time. In this case, it has been found that the viscoclastic effect can lead to a state of
stress which is higher than that obtained by an ¢lastic analysis (Flaggs and Crossman, 1981 ;
Weitsman, 1979). This effect would increase the probability of microcrack formation near
a free edge and thus is unfavorable in consideration of environmental durability. Therefore,
it is important to develop an accurate analysis method for the study of the time-dependent
interlaminar stress distribution in composite laminates during their exposure to hygro-
thermal environments.

Analysis of the viscoelastic response of composites is complicated by their history-
dependent nature. All the past responses over previous loading periods need to be accumu-
lated in order to determine the deformation at a specific time. This complexity has limited
the closed-form solution to the special case of simple laminate geometry (Chung and
Bradshaw, 1981 ; Flaggs and Crossman, 1981 ; Tuttle and Brinson, 1985). Recently, Lin
and Hwang developed a finite element formulation and obtained a viscoelastic solution for
composite laminates with a circular hole (Lin and Hwang, 1989). This method is extended
here to account for the free edge effects under the influence of mechanical and hygrothermal
loads. A generalized plane strain finite element is formulated using the integral form of
the constitutive equation and a variational thecorem for viscoclasticity. Using this approach,
the interlaminar normal and shear stress distributions near a free edge are obtained as
functions of time. The effects of ply orientations and temperature/moisture conditions on
the stress histories are also studied.

2. GOVERNING EQUATIONS

Consider a viscoelastic body which is very long in the x-direction, as shown in Fig. 1.
It is assumed that : (1) the geometry has a constant yz cross-section and (2) mechanical and
hygrothermal loads do not vary in the x-direction. Under these conditions, the resulting
stresses and strains are independent of the x-coordinate and the body is in a state of
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Fig. 1. Laminate geometry.

generalized plane strain. The engineering strain-displacement relationship for a viscoelastic
solid in the generalized plane strain state is
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where u, v and w are displacements in the x-, y- and z-directions, respectively. The strains
and displacements are functions of both position and time.
The equations of equilibrium in the absence of body forces reduce to
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Using contracted notations for the stresses and strains, the constitutive equation for a
linear anisotropic material can be expressed by the following integral (Schapery, 1967):

1

a;(T,M,’) = J.

d .,
. CAT. M, l—t)gt. {g(r)—¢* ()} dt forij=1,2,...,6 (3)
where g, is the stress component ; g; and £ are the total engineering strain and hygrothermal
strain. respectively; C, is the relaxation modulus; T is the temperature; and M is the
moisture content. ¢ denotes time and t is a dummy variable for integration. The free
hygrothermal strain &* is related to the temperature and moisture changes by
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Ej. == 1j6r+ pjeu

where z; and B, are coefficients of thermal and hygroscopic expansion, respectively, and 8;
and 8, are the changes in temperature and moisture from the stress-free state. The relaxation
moduli C; are determined experimentally as functions of time at various temperatures.

Using the time-temperature/moisture superposition principle, master curves for relax-
ation moduli can be defined as follows

Ci(T, M, ) = Cy[To, Mo.{(1)] 4)

where T, is the reference temperature, M|, the reference moisture, and {;(¢) is the reduced
time. The reduced time {;, which is related to the temperature/moisture shift factor, is
defined as (Morland and Lee, 1960):

(0= ‘[ by(T(s), M(s)) ds &)

0

where b,(T(s), M(5)) is the temperature/moisture shift factor determined from the master
curve of the relaxation modulus. For the case of constant temperature and moisture, eqn
(5) is reduced to

L) = b,(T, M) ¢. 6)

Substituting eqn (4) into egn (3) yields the following constitutive relation in linear
thermo-viscoclasticity :

£

J
o({T.M, ) = J. CylTo, Mo {y ()= L(x)] i (g (1) —¢* (7)) dr. M

For computational purposcs, the relaxation moduli C,; can be conveniently expressed in
terms of the following exponential serics

NT
ng(f) = C;j'o‘*‘ Z C;}',,, C-‘m"“" (8)
=}

where NT is the number of terms used in the series expansion and the constants 4, are
the relaxation times.

For a 3-D orthotropic material, the nine independent C,, and the associated reduced
times {;, can be written in the following abbreviated form:

Ci=Cy, C;=Cy, C3=0Cy,...,0i=C and
OG=0u G=0a oo lo=0ee Adia = di 1. elC )

Then the transformed C,, along arbitrary coordinates in the xyz system become

9 NT
C:;(f) = Z Hijr {Cr.o+ Z Coa e'm"“} (10)
r=1i wem )

wherei,j=1,2,3,...,6,andr = 1,2,3,...,9. The transformation coefficients n,, are given
in the Appendix.

In addition, the variational functional for linear thermo-viscoelastic problems can be
defined as (Christensen, 1971):
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where y; is the displacement and T; is the prescribed surface traction on the surface Q. The
first variation of the above functional was shown to be stationary (Christensen, 1971), that
is,

B g ase,
o= J» .[-_x j C(T, M, t—s—1) = {e,(r)—&* (1)} d g’s(s) ds dv

-L f T}(t—s)aég;(s)dsd0=0. (12)

3. FINITE ELEMENT FORMULATION

A special finite element will be derived for the solution of thermo-viscoelastic problems
in composites. Consider the geometry of a laminate in the state of generalized plane strain,
as shown in Fig. 1. The associated displacement field was shown to be (Pipes and Pagano,
1970):

u=xg()+U(y,z.t)
v=V(pz1)
w= W(yz1) (13)

where £,(f) is the uniform extensional strain applied to the laminate. In the case of hygro-
thermal loading, ¢,(¢) is the resulting laminate strain to be solved by the finite element
method.

The finite element representation of the above generalized plane-strain problem consists
of a cross-sectional geometry in the yz plane subdivided into a finite number of elements
(Wang and Crossman, 1977). The four-noded rectangular elements incorporating three
degrees of freedom (U, ¥, W) per node will be used for this problem. The shape functions
for an element are bilincar, namely

Uy.z1)
Viy,z2,0) ¢ = [Ny, 2 {q(0)} (14
W(y.2,1)
where
N O O0'N, 0 O'N;, O O N, O O
Wp2al={0 N 0!0 N 0'0 N, 0,0 N, O
0 0 N'O 0 N'O 0 Ny jJO 0 N,
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In the above, a and b are the y- and z-dimensions of the element, respectively, N(y,2) is
the bilinear shape function and {g(#)} is the nodal displacement vector.

By substituting eqn (14) into eqn (13), the displacement field within an element can be
described in terms of the assumed shape functions {N;}, the strain ¢, and the nodal
displacement vector {g(1)} :

u xeg{t)+ o

= v o= Eo
1 T R
w W

where {M} is [ x O 0]". By differentiating eqn (15) with respect to x. y and z, the
following strain—displacement rclationship can be obtained :

fr o 80(1)}
te(0} = [o B(y. :)] {qm ‘ (16
Note that the strain vector can be partitioned as

oy = {520} )

where (€(0} = le, & V) Yo Yol
Substitution of eqn (15) and eqn (16) into the variational expression in eqn (12) yields
the following finite element equilibrium equations for the element :

t a ”.
f k68 2D e = £, -2, (18)

-

It is noted that f3(r) represents the element ““residual” nodal force and f£,,(¢) is the “reactive™
nodal force which is unknown at this stage. For the mechanical loading case, ¢,(7) becomes

{g:(9)} = {a(0)}-

For hygrothermal loading, g.(t) is expressed as

(@) = { ‘“”}

£o(7)

where g4(1) is the laminate hygrothermal strain to be calculated.
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In the case of mechanical loading only, the element stiffness matrix [k,.] and the
element nodal force vector {f3} can be calculated as follows:

9 NT
= Z {kmr& + Z km.w exp [ (A c:)/;"r.m]} (19)

rwl W}

and

Sa() = J‘J; .[ .: B,-,..C;;(C,—-Ci)asgf)df dy dz

I NT
=z {{f"‘"” % S €XP f—-c,/z,.wl}so(m

= wm |

't - NT
+ J {f,,.,.0 + 3 frmxp {-—(c,—c:)/a,.m}} %) dr} (20)

G -

where i, j=1.2,....5and m,n= 1,2,...,12. NT is the number of expanded terms used
for the relaxation moduli, I" denotes the area of the element and

51,(& -{) = C@: SIS (':r "“'C;)

kmnro = Co BNys v+ 0B dy dz

kmnr.m = Cr,w

o

B, dy dz

J; Byutli+ ny+ 1B dy dz
J

fm.o = Cr.ﬁ

]
o
.~
-

fmr,w = Cr.m j; Blm’?ﬂ,r d)’ dZ (21)
(summation over repeated indices, except for r).

For hygrothermal loads, the element stiffness matrix k,,,isa 13 x 13 matrix. The 12 x 12
components of this matrix are shown in eqn (19). Other components are shown below:

K3 = J;Bm.C‘n(Cr——C:) dyd:

kism= j; C\({,—C)B,, dy dz

Kyzas = J:_Cn(‘:;“‘f:) dydz

j=12,...,5). (22)
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Similar to the mechanical load case, the element stiffness matrix associated with hygro-
thermal loading can be expressed as

9

NT
kmn((r—c;) = X {kmnr.0+ Z km.m exp{-(Cr_c;)/Ar.m]} (23)
w=|

rm{

wherem,n=12...,13
The residual nodal force vector due to hygrothermal loads becomes

(20} = - f L J: {Bi,.b.,(c, i 20 g, c)”“"’}drdydz

e
and
mo=-[[[" {eue-0%2 10,02 ey
where ij=1,2,....5.m=1,2,...,12, and
(@)= Lot & o e et ayln (29)

Using the exponential series for C,;, as given in eqn (10), the following force vector
can be derived

f;(t) - - —Z‘ {{ mr0+ g fi:rw cxp[ Cr/’hm}} r(o)

’

+ {fmrﬂ"" z ffwm exP[ Cr/lrm]}obl(o)

NT
-+ J:-O {{ﬁro"’ Z:’ j:,,m cxp[—. (C' C’)/}"m]} 30,(1)

{fm+ Y Shmexp(~(C, {)/z,,,.x} ""““’} r} 26)

wherem = 1,2,3,..., 12 and

4

NT
ﬁl(‘) - r;' {{fl’kﬂ + Z: ﬁSr.m exp [‘Crf’hm}} 0?(0)
NT
+ {ffl;.n + zl fflr.w cxp[—{f/lr,w]} BM(O)
[ {rer E Aeeret-a-cn, 1) 2

+ {fflrﬂ‘}' Z ff)rw cxP[ (C { )/Arw]} agu(t)} T}

where
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ol
Jorw = Co j; {Bm'lu+ nG+ DG+ 1) +Bim"il.ra.l} dyd:

o

,fm, =GC,, J; {Bm.mH- I+ I).rB(Hv |)+Bi:n’1iugl} d.V d:

ﬂ}r.w = Cr.w ﬁ {’?h’,ri(iib n +']l l.ril} d}’ dZ

v

.
flﬁlr.w = Cr.w ‘L {"li.rﬂ(i+ 1 + "l I.rﬂl} d_V d:' (27)

o

Note that in the above, i,j=1,2,...,5, m=1,2,...,12, and that {&} and {f} are the
transformed coefficients of thermal and hygroscopic expansion with respect to the xyz
coordinate system.

Assembly of element equations over the entire domain leads to the following global
equations:

f T k-0 - E-F0) (28)

- Jt

where m, n range from 1 to the total degrees of freedom. K, is the structural (global)
stiffness matrix and F,, and F}, are global force vectors. Note that F,(1) becomes zero if
only &, is applied.

4. NUMERICAL PROCEDURES

A direct integration of cqn (28) would require enormous computing time and memory
storage since the stiffness matrix is history-dependent. To overcome these difficulties, the
numerical algorithm derived by Taylor er al. (1970) for isotropic materials is extended here
for the solution of eqn (28). In this procedure, the derivative of displacement u, with respect
to time is approximated by

aun(l) Aun(t/) un(ll)"un(lj« 1)
~ = <t <. 29
dt Ay t—t_, oSt 29

It is assumed that both mechanical and hygrothermal loads are linear during each time
interval, i.e.

deq (1) - Agy (1) _ eo(t;)—€o(t;-1)

o T Ay Ay
0.(2) - Alr(1) _ O0r(1))—07(t;-1)
o - Ay Ay
00y (0)  AOy(1) 0w (4)—0u(y-1) (30)
o~ Ay Ay '

Assuming that there is no loading applied at time ¢ < 0, the initial values for the strain,
temperature, and moisture differences are
Aeo(0) = £0(0)
A6.(0) = 0+(0)
A (0) = 8,,(0). an
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Using the approximations for displacements and loads in eqns (29) and (30), eqn (28)
can be expressed in a recursive form

9 NT
z {Kmnr.0+ Z Kmnr.er.w(Atp)} Aun(’p)

r=| w=1

9

NT
= Fm('p)-F:n('p)_ Z {Kmm.oun(tp— l)+ Z Gmr.w(’p)} (32)
w=]

r=|

in which K, o and K,,,,., denote the global matrices as assembled from the element matrices
of k.0 and k..., in eqn (19) or eqn (23). In the case of mechanical loading, F,, and G,
are given by

9

NT
F,',,(lp) = Z {Fmr.oso(lp)+ z Fmr.wAeo(tp)Hr.m(A‘p)} (33)
wm=|

r=1

and

Gmr.m(l/-) = exP ( - ACr.l’/}'r_m) {Gmr.w('p -1 ) + [Kmnr.mA“n(tp -1 )
+ Fmr.mAf:O(’p -1 )] Hr.m(Atp -1 )} (34)
with

Gmr.m (0) = 0

|
flr.m(A’p) = E

r

J" Cxp [ - (ACr.l,)/)‘r.m] dr

ot

H,.,0)=1
L, =00,
AC!.I’ = Cr.l’ - Cr.l’ 1 (35)

For the hygrothermal loading case, F,, and G,,, are defined as follows :

9
Fr:l(lp) = - Z [FI:I.OOT(lp)'*'Fle".OOM(’p)
re=1

NT
+ X {F.Z,.qur(lp)+F,‘.'.,.oM,u(l,,)}H,,...(Al,)] (36)

and

Gmr.w(’p) = exP (— ACr.t’/)'r.m) {Gmr.m(l - l) + [Kmnr.wAun(lp— l)
- Fr:r.onT(tp -1 ) - F:w.wAgM('p— l)] Hr.m(Atp— | )} . (37)

Note that eqn (32) is in a recursive form. Therefore it is possible to solve for the
displacements u, at time ¢, using only the previous solution at time ¢, _ ;. Similarly, employing
the transformed constitutive equations of eqn (7), in the xyz coordinate system, the stress
component within an element can be described by the recursive equation:
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9

0',-((,) = Z {Cr,o"tj.r {sj(:p) - d] eT(’p) - ﬂ;eM('p)}

NT
+ Zl [Cr.w"lj.rHr.w(Atp){Aej (’p) - d.;‘Aor(lp) - BJABV (‘p)} + G;‘rw(tp)]} (38)

where i, j = I, 2,....6 (summation over j) and

Girol(ty) = exp(=A(,, [ NGE (1, ) +Cruny H, (AL, )
{Ae(t,- 1))~ GA0:(t,- ) = BiA0u (5,_ )} (39)

After the Au,(1,) are obtained from eqn (32), the displacements u,(r,) can be found
from eqn (29). The strain field is then obtained from the strain—displacement relations in
eqn (16). Finally, the stresses can be computed from the constitutive equations in eqn (38).

5. RESULTS FOR INTERLAMINAR STRESSES

Based on the preceding formulation, numerical results have been obtained for the time-
dependent interlaminar stresses in graphite/epoxy composites subjected to mechanical and
hygrothermal loads. The clastic material properties, master relaxation modulus curves
and the shift factors corresponding to various moisture contents and temperatures were
investigated by Crossman et al. (1978) and these values are used in the present study. It is
assumed that E, of the lamina is equal to £, and G,; = G 3 = G;,. Also, Poisson’s ratios
v,y and vy, are assumed to be the same as v,,. Since £, is in general dominated by fiber
propertics, it is assumed that stiffness C, | is time-independent while other relaxation moduli
such as C,,, Cy3, Cy3, Ca3. Cy3, Casr Css and C,q have the same time-dependent function,

Using the reduced time associated with the temperature/moisture shift factors, the
variation of material properties C; at various temperatures can be found. Figure 2 shows
the C,, values as a function of time at 7= 77°, 122" and 140°F for the case of constant

1.25 M I, i, AL R i Sliin B4 BEG Bl RiLe BLL B AL Bl R i SLL &)
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g J N i
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e ] N r
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1 \ i
e \\ r
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Fig. 2. Time variation of relaxation modulus at various temperatures.
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Fig. 3. Interlaminar normal stresses in cross-ply laminates (z = 0 in., AT = |°F),

moisture content (M = 0.3%). It is noted that Cy, degrades faster at high temperatures
than at low temperatures.

S.1. Comparison studies

Since there are no solutions available on interlaminar stress histories for comparison,
verification of the present approach will be limited to two special cases; an elastic solution
for interlaminar stresses at ¢ = 0 and a viscoelastic solution for in-plane stresses as a function
of time. In the elastic case, [0/90], and [90/0], graphite/epoxy laminates subjected to thermal
loads were considered. The resulting interlaminar stress o, at the mid-plane is shown in
Fig. 3. Good agreement between the present solution and Wang and Crossman (1977) is
observed.

In the viscoclastic case, inplane shear stress 7,, in a [+45], laminate due to uniform
temperature AT = 71°F was obtained. This solution was compared with the classical lami-
nation solution for an infinite plate by Flaggs and Crossman (1981), as shown in Table 1.
The discrepancy between these two solutions is in the range 0.9-5.6% . The differences may
be attributable to the finite width (b/r) effects which are not considered by Flaggs and
Crossman (1981).

5.2. Interluminar stress histories
To demonstrate the present numerical procedure, the interlaminar stresses in [0/90],,
[90/0], and [45/—45], graphite/epoxy laminates are presented. In each case, a laminate

Table [. Viscoclastic shear stress t,, in [£45], GY70/339
composites (AT = —71°F and M = 0%)

Time Flaggs and Present Error
(s) Crossman (1981) solution (%)
t=0 870 8774 09
t = 1800 762 807.3 5.6
¢ = 180,000 670 695.5 38
t = 360,000 650 667.7 2.7

BAS 27:7-1
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Fig. 4. Interfaminar normal stresses in a (0/90), laminate (3 = 0.0056 in.. T = 140°F, M = 0.3%).

width-to-thickness ratio (b/1) of four is considered. The finite element model used consists
of a 32 x 8 mcesh pattern (256 clements) in the yz cross-section with a total of 891 degrees
of freedom. The step size At is sct to 200 s initially and then is allowed to increase with time
to a maximum of 3 x 107 s. There are 60 time steps involved in the calculation of viscoelastic
interlaminar stresses over a period of 20 years.,

A uniform axial strain of g, = 0.005 in./in. is applied to the [0/90], laminatc in the 0.3%
moisture environment. The resulting o, along the interface between the 0° and 90° layers is
shown in Fig. 4 for T = 140°F. The results show that at y/b ~ 0.9, z = 0.0056, . seems to
be independent of time, Also, it is apparent that the stress field is singular at the free edge.
The order of stress singularity appears to be changing with time as can be seen from Fig.
4. Figure 5 shows the interlaminar stress history o,(1) near the free edge (y/b = 0.99). These
results have been normalized with respect to the initial stress at ¢ = 0. It is seen that the
rate of stress relaxation is greater at 140°F (about 75%) than at 77°F (about 32%) after
t = 10%* s (20 years) because material properties decrease faster at 7 = 140°F than at
T = 77°F. At T = 140°F, the inplane stresses ¢, in each layer of a (0/90), laminate are
plotted in Fig. 6. Over a period of 20 years the stress o, relaxes about 78% in the 90° layer
while o, remains constant in the 0° ply since C,, is assumed to be time-independent. The
high relaxation rate is due to the fact that the GY70/339 material used in the analysis has
strong time-dependent properties.

In the [90/0], laminate, the same loading condition, £, = 0.005 in./in., is applied at
T = 140°F and M = 0.3%. The results of the interlaminar normal stress at z = 0.0056 in.
and z = 0.0 in, are shown in Figs 7 and 8, respectively. Note that o, relaxes as time increases.
In addition, while the rate of relaxation varies from point to point at each instant, o, is
distributed in such a manner that the equilibrium condition of forces in the z-direction is
satisfied.

In a [45/ —45], laminate, both ¢, and t,. are present near the free edge. For a uniform
applied strain of ¢, = 0.005 in./in., the resulting interlaminar stress t.. is shown in Fig. 9.
The distribution of 6. along = = 0.0056 in. as a function of time is illustrated in Fig. 10.
Near the free edge of the 45” and —45” ply interface, the magnitude of .. is reduced by
about 79% during a 20-year period. In comparison, the stress o, relaxes about 70% at the
same location for the same period.
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Fig. 5. Histories of interlaminar stresses at the free edge in a (0/90), laminate (= = 0.0056 in.).
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6. CONCLUSION

A finite element procedure has been presented for the viscoelastic solution of inter-
laminar stresses near a free edge in laminated composites subjected to mechanical and
hygrothermal loads. Numerical results have been obtained to demonstrate the viscoelastic
effect in several different laminates. These results show that both the interlaminar normal
and shear stresses relax significantly when a laminate is subjected to constant strain loading.
The amount of stress relaxation depends strongly upon ply orientations and hygrothermal
environments. Such a time-dependent effect is important in the case of cyclic loading
and must be considered in predicting the long-term response of composites at elevated
environmental conditions.
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